G microstates as biomarker for psychosis in ultra-high-risk patients


EEG microstates as biomarker for psychosis in ultra-high-risk patients

  • 1.

    Harvey, P. D. & Strassnig, M. Predicting the severity of everyday functional disability in people with schizophrenia: cognitive deficits, functional capacity, symptoms, and health status. World Psychiatry 11, 73–79 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 2.

    Perkins, D. O., Gu, H., Boteva, K. & Lieberman, J. A. Relationship between duration of untreated psychosis and outcome in first-episode schizophrenia: a critical review and meta-analysis. Am. J. Psychiatry 162, 1785–1804 (2005).

    PubMed  Google Scholar 

  • 3.

    Santesteban-Echarri, O. et al. Predictors of functional recovery in first-episode psychosis: a systematic review and meta-analysis of longitudinal studies. Clin. Psychol. Rev. 58, 59–75 (2017).

    PubMed  Google Scholar 

  • 4.

    Häfner, H. et al. The ABC Schizophrenia Study: a preliminary overview of the results. Soc. Psychiatry Psychiatr. Epidemiol. 33, 380–386 (1998).

    PubMed  Google Scholar 

  • 5.

    Fusar-Poli, P., Yung, A. R., McGorry, P. & van Os, J. Lessons learned from the psychosis high-risk state: towards a general staging model of prodromal intervention. Psychol. Med. 44, 17–24 (2014).

    CAS  PubMed  Google Scholar 

  • 6.

    Yung, A., Fusar-Poli, P. & Nelson, B. The ultra high risk approach to define psychosis risk. Curr. Pharm. Des. 18, 346–350 (2012).

    CAS  PubMed  Google Scholar 

  • 7.

    Fusar-Poli, P. et al. Heterogeneity of psychosis risk within individuals at clinical high risk. JAMA Psychiatry 73, 113 (2016).

    PubMed  Google Scholar 

  • 8.

    Schultze-Lutter, F. et al. EPA guidance on the early detection of clinical high risk states of psychoses. Eur. Psychiatry 30, 405–416 (2015).

    CAS  PubMed  Google Scholar 

  • 9.

    Perkovic, M. N. et al. Theranostic Biomarkers

  • 10.

    Riecher-Rössler, A. & Studerus, E. Prediction of conversion to psychosis in individuals with an at-risk mental state: a brief update on recent developments. Curr. Opin. Psychiatry 30, 209–219 (2017).

    PubMed  Google Scholar 

  • 11.

    Rodrigues-Amorim, D. et al. Schizophrenia: a review of potential biomarkers. J. Psychiatr

    PubMed  Google Scholar 

  • 12.

    Zabel, M. et al. Assessing candidate serum biomarkers for Alzheimer’s disease: a longitudinal study. J. Alzheimers Dis. 30, 311–321 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 13.

    Ramyead, A. et al. Aberrant current source-density and lagged phase synchronization of neural oscillations as markers for emerging psychosis. Schizophrenia Bull. 41, 919–929 (2015).

    Google Scholar 

  • 14.

    Larsen, K. M., Dzafic, I., Siebner, H. R. & Garrido, M. I. Alteration of functional brain architecture in 22q11.2 deletion syndrome-Insights into susceptibility for psychosis. NeuroImage 190, 154–171 (2019).

    CAS  PubMed  Google Scholar 

  • 15.

    Mikanmaa, E. et al. Towards a neurodynamical understanding of the prodrome in schizophrenia. NeuroImage 190, 144–153 (2019).

    PubMed  Google Scholar 

  • 16.

    Lehmann, D., Ozaki, H. & Pal, I. EEG alpha map series: brain micro-states by space-oriented adaptive segmentation. Electroencephalogr. Clin. Neurophysiol. 67, 271–288 (1987).

    CAS  PubMed  Google Scholar 

  • 17.

    Michel, C. M. & Koenig, T. EEG microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks: A review. NeuroImage 180, 577–593 (2018).

    PubMed  Google Scholar 

  • 18.

    Koenig, T. et al. Millisecond by millisecond, year by year: normative EEG microstates and developmental stages. NeuroImage 16, 41–48 (2002).

    PubMed  Google Scholar 

  • 19.

    Tomescu, M. I. et al. From swing to cane: Sex differences of EEG resting-state temporal patterns during maturation and aging. Dev. Cogn. Neurosci. 31, 58–66 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 20.

    Khanna, A., Pascual-Leone, A., Michel, C. M. & Farzan, F. Microstates in resting-state EEG: current status and future directions. Neurosci. Biobehav. Rev. 49, 105–113 (2015).

    PubMed  Google Scholar 

  • 21.

    Khanna, A., Pascual-Leone, A. & Farzan, F. Reliability of resting-state microstate features in electroencephalography. PLoS ONE 9, e114163 (2014).

    PubMed  PubMed Central  Google Scholar 

  • 22.

    Britz, J., Van De Ville, D. & Michel, C. M. BOLD correlates of EEG topography reveal rapid resting-state network dynamics. NeuroImage 52, 1162–1170 (2010).

    PubMed  Google Scholar 

  • 23.

    Musso, F., Brinkmeyer, J., Mobascher, A., Warbrick, T. & Winterer, G. Spontaneous brain activity and EEG microstates. A novel EEG/fMRI analysis approach to explore resting-state networks. NeuroImage 52, 1149–1161 (2010).

    CAS  PubMed  Google Scholar 

  • 24.

    Irisawa, S. et al. Increased omega complexity and decreased microstate duration in nonmedicated schizophrenic patients. Neuropsychobiology 54, 134–139 (2006).

    PubMed  Google Schola26.Koenig, T. et al. A deviant EEG brain microstate in acute, neuroleptic-naive schizophrenics at rest. Eur. Arch. Psychiatry Clin. Neurosci. 249, 205–211 (1999).

  • CAS  PubMed  Google Scholar 

  • 27.

    Lehmann, D. et al. EEG microstate duration and syntax in acute, medication-naive, first-episode schizophrenia: a multi-center study. Psychiatry Res. 138, 141–156 (2005).

    PubMed  Google Scholar 

  • 28.

    Nishida, K. et al. EEG microstates associated with salience and frontoparietal networks in frontotemporal dementia, schizophrenia and Alzheimer’s disease. Clin. Neurophysiol. 124, 1106–1114 (2013).

    PubMed  Google Scholar 

  • 29.

    Strelets, V. et al. Chronic schizophrenics with positive symptomatology have shortened EEG microstate durations. Clin. Neurophysiol. 114, 2043–2051 (2003).

    CAS  PubMed  Google Scholar 

  • 30.

    da Cruz, J. R. et al. EEG microstates are a candidate endophenotype for schizophrenia. Nat. Commun. 11, 3089 (2020).

    PubMed  PubMed Central  Google Scholar 

  • 31.

    Rieger, K., Diaz Hernandez, L., Baenninger, A. & Koenig, T. 15 years of microstate research in schizophrenia-where are we? a meta-analysis. Front Psychiatry 7, 22 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 32.

    Andreou, C. et al. Resting-state connectivity in the prodromal phase of schizophrenia: insights from EEG microstates. Schizophr. Res. 152, 513–520 (2014).

    PubMed  Google Scholar 

  • 33.

    Tomescu, M. I. et al. Deviant dynamics of EEG resting state pattern in 22q11.2 deletion syndrome adolescents: a vulnerability marker of schizophrenia? Schizophr. Res. 157, 175–181 (2014).

    PubMed  Google Scholar 

  • 34.

    Riecher-Rössler, A. et al. The Basel early-detection-of-psychosis (FEPSY)-study–design and preliminary results. Acta Psychiatr. Scand. 115, 114–125 (2007).

    PubMed  Google Scholar 

  • 35.

    Riecher-Rössler, A. et al. [The Basel Screening Instrument for Psychosis (BSIP): development, structure, reliability and validity]. Fortschr. Neurol. Psychiatr. 76, 207–216 (2008).

    PubMed  Google Scholar 

  • 36.

    Yung, A. R. et al. Prediction of psychosis: a step towards indicated prevention of schizophrenia. Br. J. Psychiatry 172, 14–20 (1998).

    CAS  Google Scholar 

  • 37.

    Overall, J. E. & Gorham, D. R. The Brief Psychiatric Rating Scale. Psychological Rep. 10, 799–812 (1962).

    Google Scholar 

  • 38.

    Peralta, D. et al. Exploring the predictive power of the unspecific risk category of the Basel Screening Instrument for Psychosis. Early Intervention Psychiatry. https://doi.org/10.1111/eip.12719 (2018).

    Article  Google Scholar 

  • 39.

    Delorme, A. & Makeig, S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134, 9–21 (2004).

    PubMed  Google Scholar 

  • 40.

    Murray, M. M., Brunet, D., Michel, C. M. & Topographic, E. R. P. analyses: a step-by-step tutorial review. Brain Topogr. 20, 249–264 (2008).

    PubMed  Google Scholar 

  • 41.

    Koenig, T., Kottlow, M., Stein, M. & Melie-Garcia, L. Ragu: a free tool for the analysis of EEG and MEG event-related scalp field data using global randomization statistics. Comput Intell. Neurosci. 2011, 938925 (2011).

    PubMed  PubMed Central  Google Scholar 

  • 42.

    Olbrich, S. et al. EEG-vigilance and BOLD effect during simultaneous EEG/fMRI measurement. NeuroImage 45, 319–332 (2009).

    PubMed  Google Scholar 

  • 43.

    Hayes, A. F. PROCESS: a versatile computational tool for observed variable mediation, moderation, and conditional process modeling. Psychology [Whit paper]. Retrieved

  • 44.

    Damborska, A. et al. EEG resting-state large-scale brain network dynamics are related to depressive symptoms. Front. Psychiatry 10, 548 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 45.

    Katayama, H. et al. Classes of multichannel EEG microstates in light and deep hypnotic conditions. Brain Topogr. 20, 7–14 (2007).

    PubMed  Google Scholar 

  • 46.

    Brodbeck, V. et al. EEG microstates of wakefulness and NREM sleep. NeuroImage 62, 2129–2139 (2012).

    PubMed  Google Scholar 

  • 47.

    Kindler, J. et al. in schizophrenia: auditory verbal hallucinations are related to shortening of specific microstates. Clin. Neurophysiol. 122, 1179–1182 (2011).

    CAS  PubMed  Google Scholar 

  • 48.

    Custo, A. et al. Electroencephalographic resting-state networks: source localization of microstates. Brain Connect. 7, 671–682 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 49.

    Milz, P. et al. The functional significance of EEG microstates–Associations with modalities of thinking. NeuroImage 125, 643–656 (2016).

    CAS  PubMed  Google Scholar 

  • 50.

    Kapur, S. Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. Am. J Psychiatry 160, https://doi.org/10.1176/appi.ajp.160.1.13 (2003).

  • 51.

    Kambeitz-Ilankovic, L. et al. Neurocognitive and neuroanatomical maturation in the clinical high-risk states for psychosis: a pattern recognition study. NeuroImage. Clin. 21, 101624 (2019).

    PubMed  Google Scholar 

  • 52.

    Chung, Y. et al. Cortical abnormalities in youth at clinical high-risk for psychosis: findings from the NAPLS2 cohort. NeuroImage. Clin. 23, 101862 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 53.

    Stevens, A., Lutzenberger, W., Bartels, D. M., Strik, W. & Lindner, K. Increased duration and altered topography of EEG microstates during cognitive tasks in chronic schizophrenia. Psychiatry Res. 66, 45–57 (1997).

    CAS  PubMed  Google Scholar 

  • 54.

    Yoshimura, M. et al. A pharmaco-EEG study on antipsychotic drugs in healthy volunteers. Psychopharmacology (Berl.) 191, 995–1004 (2007).

    CAS  Google Scholar 

  • 55.

    Fusar-Poli, P. et al. The psychosis high-risk state: a comprehensive state-of-the-art review. JAMA Psychiatry 70, 107–120 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 56.

    Schultze-Lutter, F., Klosterkotter, J. & Ruhrmann, S. Improving the clinical prediction of psychosis by combining ultra-high risk criteria and cognitive basic symptoms. Schizophr. Res. 154, 100–106 (2014).

    PubMed  Google Scholar 

  • 57.

    Schmidt, A. et al. Improving prognostic accuracy in subjects at clinical high risk for psychosis: systematic review of predictive models and meta-analytical sequential testing simulation. Schizophr. Bull. 43, 375–388 (2017).

    PubMed  Google Scholar 

  • 58.

    Koutsouleris, N. et al. Use of neuroanatomical pattern classification to identify subjects in at-risk mental states of psychosis and predict disease transition. Arch. Gen. Psychiatry 66, https://doi.org/10.1001/archgenpsychiatry.2009.62 (2009).

  • 59.

    Harrison, P. J. & Owen, M. J. Genes for schizophrenia? Recent findings and their pathophysiological implications. Lancet 361, 417–419 (2003).

    CAS  PubMed  Google Scholar 

  • 60.

    Baradits, M., Bitter, I. & Czobor, P. Multivariate patterns of EEG microstate parameters and their role in the. best income site

  • 1 comment:

    Powered by Blogger.